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1  Introduction to MCRA 
MCRA (Monte Carlo Risk Assessment) is a computational tool for dietary risk assessment of 
substances in foods based on monitoring data concerning the quality of foods and agricultural 
products. Intake (exposure) assessment is an important step in risk assessment of substances found in 
food, such as agricultural chemicals (e.g. pesticides, veterinary drugs), toxins (e.g. mycotoxins), 
environmental contaminants (e.g. dioxins) and vitamins. 

1.1 Model description 
This manual describes the stochastic (or Monte Carlo) models behind the MCRA program. These 
models assess acute (short-term) or chronic (long-term) risks due to dietary intake by combining food 
consumption survey data and concentration data from e.g. monitoring programs.  
 
Food consumption data may arise from different sources. Typically, national food consumption 
surveys or monitoring programs provide information on food intake in the general population. For 
example, from the Dutch Food Consumption Survey (1997) food consumption patterns (x1 ,...,xp), 
body weight (w), age (a) and sex (s) are available for 6250 individuals on 2 consecutive days. When 
concentrations are not measured on consumed foods, a composition database is necessary to convert 
the amounts of food as consumed (e.g. pizza) to amounts of foods as measured (x1 ,...,xp) which are 
used in the model. Van Dooren et al. (1995) provide such a conversion for the Dutch situation. 
Concentration data may be available from different sources. In some countries national monitoring 
databases exist, which are useful for the risk assessment of substances already in use. For example, 
the Dutch KAP database (van Klaveren 1999) stores annually more than 200,000 records of 
measurements originating from food monitoring programs for meat, fish, dairy products, vegetables 
and fruit.  
 
Basically, MCRA simulates daily consumptions by sampling a food consumption database and 
combines these with a random sample from either a concentration database (empirical distribution) or 
a parametric distribution of concentrations. The result is a full distribution of intakes, rather than 
traditional deterministic methods which only provide a point estimate. Percentiles of the intake 
distribution can be used to assess risks by relating them to e.g. an acute reference dose (ARfD).  
 
The basic model for the intake of a special substance in an acute risk analysis is: 

i
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where yij is the intake by individual i on day j (in microgram substance per kg body weight), xijk is the 
consumption by individual i on day j of food k (in g), cijk is the concentration of that substance in food 
k eaten by individual i on day j (in mg/kg, ‘ppm’), and wi is the body weight of individual i (in kg). 
Finally, p is the number of foods accounted for in the model.  
Note that the definition of ‘food’ is flexible: it may represent a Raw Agricultural Commodity (RAC), 
e.g. ‘apple’, but it may also specify subdivisions, e.g. ‘apple, peeled’ or ‘apple, imported’. 
 
The quantities xijk, wi and cijk are assumed to arise from probability distributions describing the 
variability for food consumption and weight, p(x1,...,xp,,w), and for concentrations of substances in 
each food, pk(c). In principle, these probability distributions may be parametric (e.g. completely 
defined by the specification of some parameter values) or empirical (e.g. only implicitly defined by 
the availability of a representative sample). Given these probability distributions (or estimates thereof) 
MC-simulations can be used to generate an estimate of the probability distribution p(yij) to assess 
acute risks by intake of the substance. 
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In a chronic exposure assessment, the main interest goes to the fraction of individuals with a usual 
intake per day higher than an intake limit. Usual intake is defined here as the long-run average of 
daily intakes of a substance by a individual. Usually, food consumption data are available for 
individuals on 2 (or more) consecutive days. We assume an equal number of days for each individual. 
This is in confirmity with our method of data entry for consumption. As a consequence, days without 
consumptions do have zero intake. MCRA calculates the distribution of the usual intakes over 
individuals based on the average concentration and the empirical distribution of intake between 
individuals and between different intake days of the same individuals. Percentiles of this usual intake 
distribution can then be related to e.g. the acceptable daily intake (ADI). 
 
The basic model for the intake in a chronic risk analysis is: 
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where yij, xijk and wi are defined as before but now concentrations of the substance found in food k 
enter the model as an average of all values, ck . 
 
In the MCRA program we have four models available to assess chronic risks:  

1) the betabinomial-normal (BBN) model (see 5 ),  
2) the logisticnormal-normal (LNN) model (see 6 ) 
3) the discrete/semi-parametric (ISUF) model without covariable and cofactor (see 7 ).  
4) the observed individual means (OIM) model (see 8  ) 

 
The models for acute and chronic risks allow for effects of food processing between monitoring and 
ingestion, they use information on Limit of Reporting (LOR) and percent crop treated to check 
whether non-detects present a source of uncertainty. For acute risks, unit variability either from 
available data or using default assumptions can be modelled. Uncertainty of percentiles or intake 
limits  can be established by resampling methods.  
 
Depending on the problem, MC-samples may be drawn from the complete database, from a day- or 
age-restricted subset or from consumption-days only. In some cases there is insufficient information 
for specific subgroups in the population. For example, in a study on infants (age up to 12 months), a 
separately constructed food consumption database has been used (Boon et al. 2003). 

1.2 Data needed 
The data needed for MCRA are stored in MS Access databases or Excel. The database format requires 
a profound understanding about building up a relational database using the primary sources of the 
data. In exchange, flexibility to pre-process the data is offered and results may be investigated in 
greater detail. The Excel type of data do have a simple two-way data lay-out. Find in MCRA 7 Data 
Formats a full description of how to prepare the data.  
Basically, input data for MCRA originate from two sources: food consumption surveys and 
monitoring programs on substances found in foods. Often, additional tables are needed to link 
consumption data to concentration data or to implement model options like unit variability or 
processing. Figure 1 presents the linkage between tables: consumption data are linked directly to 
concentration data or in an indirect way, through the use of food composition data, food marketshare 
data, processing data or by the use of a supertype algorithm. 
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Foods as consumed in 
table: 
- FoodConsumption 

Foods as measured in table: 
- ConcentrationValues 
- ConcentrationWorstCaseValues 

Foods in additional tables: 
- Processing 
- FoodComposition 
- FoodMarketshare 
- supertype algorithm 

 
 

Figure 1: Links between consumption and concentration data 

Consumption data are consumed portions of food (consumed at different days) of individuals. To get 
standardized intakes, supply the weight of each individual. Other characteristics of the individuals, 
like age and/or sex, may be used in further analyses.  
Concentration data on substances are the amounts of the substance found on monitoring samples of 
food.  
The category additional tables provide information that links consumption data to concentration data 
or store information for more sophisticated analyses like unit variability (see Figure 1). Food 
composition data specifies the composition of foods. So, speaking about pizza, the composition 
specifies proportions for e.g. wheat, tomato, cheese etc. Food marketshare data specifies the 
proportion of subtypes, so for apple, marketshares are defined for e.g. Jonagold, Granny Smith, 
Golden Delicious etc. Processing data specify the unprocessed food, the processed food and the 
corresponding processing factors, e.g. for grapes raisins are specified. The supertype of a food is, if 
needed, automatically determined. So the supertype of e.g. Granny Smith is apple. 
 
The MCRA system has a central database with example data. However, MCRA is primarily designed 
to work with user databases, or with a mixture of user and centrally supplied data. For example, 
provide your own data on concentration levels and combine these with the centrally supplied 
consumption data. Be careful when combining tables from different databases: codes of foods of 
centrally supplied data and your own data should be consistent. 

1.3 Get started 
To use MCRA, go to https://mcra.rivm.nl. As a potential new user, first fill in the registration form. 
After login, the central menu is entered and from here all tasks and corresponding actions are started.  
 
The central menu (Figure 2) contains four main tasks which are described as: 

• Data Selection (Access [mdb], Excel [xls] or Simulated Data [xls]) 
• Specify Model (specification of input options) 
• Set and Run (specification of output options, start Monte Carlo Risk Assessment) 
• View Output (managing output) 
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Figure 2: Central menu 

A main task is started by clicking the button. Then, a menu containing actions related to the main task 
is displayed. A main button can only be pressed when the name of the tasks is displayed in black. 
Names of main tasks that are not availabe or active at the moment, are displayed in grey. After 
clicking a main button, it turns into blue to indicate that the task is active. For a first time user, the 
figure above shows the central menu and Data Selection can be started (only available option). 
Otherwise, press New Project to clear all selections.  

For a short introduction in MCRA, we refer to MCRA 7 Examples or MCRA 7 Overview.  
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2  Acute risk assessment 
Substance concentrations in the various foods are independent and therefore can be modelled by 
univariate distributions. 

2.1 Empirical modeling of concentrations 
In the empirical (non-parametric) approach, concentrations are sampled at random from the available 
data and combined with the consumption data to generate a new distribution of intake values. To 
assess the risk-intake, percentiles of the intake distribution are estimated. 

2.2 Parametric modeling of detects and nondetetects 
In the parametric approach, concentrations per food are sampled from parametric distributions. A 
special feature of concentration data is that the large majority of measured concentrations (often more 
than 80%) is recorded as zero (non-detects). These values may correspond to true zero concentrations 
(for example because the substance is never used in the specific food), or they may correspond to low 
concentrations which are below a pre-established Limit of Reporting (LOR).  
Regarding all non-detects as censored data values is not always valid. Alternative models exists to fit 
data that contain non-detects. In [EFSA, draft interim scientific report, 2009], a review is given on the 
most commonly used statistical methods to deal with non-detects. Among them are substitution, log-
probit regression, maximum likelihood estimation and non parametric methods. In the draft EFSA 
report, the question whether the non-detects are true zero’s or low concentrations is not considered, 
and only described in terms of a combination of more than one log-normal distribution, e.g. binomial 
and a lognormal.  
The lognormal distribution (logarithmic transformed values) with parameters μ  and has been 
selected as being both theoretically sensible and practically useful (Shimizu & Crow 1988, Van der 
Voet et al. 1999). Based on this priciple, we then have the following six methods: 

2σ

1. empirical (nLor ≥ 1) 
2. mixture of non-detect spike and lognormal (nLor ≥ 1) 
3. mixture of non-detect spike and truncated lognormal (nLor = 1)  
4. censored lognormal (nLor ≥ 1) 
5. censored lognormal with estimated LOR (nLor = 1) 
6. mixture of zero spike and censored lognormal (nLor ≥ 1) 
 

with nLor indicating whether multiple values for the LOR are allowed or not. 
 
Additional options for the first three models are: 

• if there are non-detect data, these can be replaced by f x LOR for a specified value f, 
• if f > 0, an additional option is to apply percentage crop treated to force true zero 

concentrations for part of the non-detect data. For legal applications of substances like 
pesticides, data may be available about the percentage of the crop which receives treatment. 
When a substance can enter the food chain only via crop treatment, and when the percentage 
of crop treated is (approximately) known to be 100pcrop-treated, then this knowledge may be 
used to infer that 100(1-pcrop-treated)% of the monitoring measurements should be real zeroes, 
contributing nothing to intake of the substance, whereas other non-detects in the monitoring 
data could have any value below the LOR.  

 
For 100(pnon-detect + pcrop-treated - 100)% of the monitoring measurements, 0 and LOR represent best-case 
and worst-case estimates. A simple way (tier 1 approach) to consider the uncertainty associated with 
non-detects is to compare intake distributions for these best-case and worst-case situations.  
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Method 2 (mixture of non-detect spike and lognormal) can be defended if all positive values are 
assumed to be above LOR, and P(c<LOR) would be very small for the fitted distribution. It would 
then be logical to apply f = 0 for the nondetects.  
Method 3 (mixture of non-detect spike and truncated lognormal) estimates a truncated lognormal 
distribution. The estimated P(c<LOR) should be lower than the fraction nondetects, and for the 
difference f = 0 would be a logical choice. 
Methods 4 (censored lognormal) and 5 (censored lognormal with estimated LOR) assume that there 
are no true zeroes, which might be a reasonable assumption for many contaminants, though not for 
artificially added substances. With model 5 the reasonableness of the given LOR value can be 
checked (assuming the lognormal model). 
Method 6 (mixture of zero spike and censored lognormal) fits a mixture distribution, where the 
nondetects are divided over a spike of true zeroes and the censored tail of the lognormal distribution.  
Method 1 (empirical) is the  parameter free alternative (default) and samples concentration values 
directly from the empirical concentration distribution using both detect and nondetect data. It requires 
to specify a value f for the nondetects (also true for methods 2 and 3). This approach requires more 
data to obtain a satisfying representation of the full distribution. 

2.3 Estimation  
The parameters of the truncated lognormal, censored lognormal and censored lognormal mixture 
model may be estimated using maximum likelihood. The censored lognormal with estimated LOR is 
an iterated version of the censored lognormal and searches for the best value of the LOR under the 
assumption that the observed fraction of non-detects equals the predicted fraction of non-detects. This 
often improves the fit of the data and supports the notion that values of the LOR are not precisely 
reported by the analytical labs. 
 
Let x denote a random variable from a lognormal distribution. Then, the log transformed variable y = 
ln(x) is normally distributed with mean yμ  and variance . 2

yσ
The probability density function (p.d.f.) of y may be expressed as: 
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Model parameters are estimated using maximum likelihood estimation based on the loglikelihood 
functions specified below:  
 
1) mixture of zero spike and censored lognormal: 
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When , loglikelihood (1) reduces to 00 =p
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5) censored lognormal with estimated LOR (assume one LOR) 

∑
+=

−
−+Φ=

n

ni y

yi

y
loryy

y
nznlorL

1
2

2

11
2

0
2

)(
)

2
1log())(log(),,(log

σ
μ

σπ
σμ     

3) mixture of non-detect spike and truncated lognormal (assume one LOR) 
 
Ignoring the n0 values below xlor  leads to: 

∑
+=

−
−+Φ−−=

n

ni y

yi

y
yy

y
nznL

1
2

2

11
2

0
2

)(
)

2
1log())(1log(),(log

σ
μ

σπ
σμ     

2) mixture of non-detect spike and lognormal  
 
Ignoring the truncated part leads to: 
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where ,  is the standard normal c.d.f., )log( ii xy = (.)Φ yylorixz σμ /))(log( , −= ,  

yylor lorz σμ /))(log( −=  , n0 number of censored values (xi < xi,lor),  n1  number of uncensored 
values (xi >= xi,l or) and xi, i = 1…n 
The loglikelihood functions are evaluated in R, using the optim algorithm to find estimates for yμ , 

 and . 2
yσ 0p

 
In the basic model, for method 1, 2 and 3 we have: 
 

  ijkijkijk cposIc ⋅=
 
with  indicating whether a concentration is sampled ( =1) or not ( =0), and cposijkI ijkI ijkI ijk  is the 

concentration value according to the chosen method. The probability of  being 1 or 0 depends on 

the number of detects found for food k and  is sampled separately for each individual i on occasion 
j.  

ijkI

ijkI

For method 4 and 5, 00 =p  and  the basic model reduces to: 
 

ijkijk cposc =  
 
For method 6, where , = p00 >p ijkI 0  and cijk  is sampled as in method 1, 2 and 3. 
 
Occasionally, estimation of the model parameters (mean, variance and zero spike) may fail because 
concentration data on specific foods are sparse or even missing.  
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3  Processing 
Concentrations in the consumed food may be different from concentrations in the food as measured in 
monitoring programs (typically raw food) due to processing, such as peeling, washing, cooking etc. 
In general, we assume the model: 
 
  ijkkijk cfcpos ⋅=
 
where cijk is the concentration in the raw food, and where fk is a factor for a specific combination k of 
RAC and processing. Values will typically be between 0 and 1, although occasionally the processing 
factor may also be >1 (e.g. drying as applied for grapes and figs).  
The user of the model will have to specify processing factors for each food k as defined in the food 
consumption data base. For this purpose, it is advised to maintain a data base of processing factors, 
indexed by substance, RAC and processing type (e.g. washing, peeling or other processing). Before 
running the model, it may then be necessary to specify how the necessary processing factors are 
derived from the data base entries and/or other information. Example: if there are no processing 
factors known for captan in pears, it may be decided to use the corresponding factors for apples 
instead. 
Often processing effects may be variable, and this may be entered in the Monte Carlo modeling by 
specifying two values for each processing factor: 
1. fk,nom: the nominal value, typically some sort of central value from an experimental study 
2. fk,upp: an upper 95% confidence limit, which typically will be set by an expert (even if statistical 

information on variability of the factor is available) 
A typical data base entry might thus read: 

RAC processing fk,nom fk,upp  
apple washing 0.5 0.7 

 
In the MC-modeling, processing factors can be used in either of three ways (for each food k to be 
chosen by the user): 

3.1 No processing factor  
Just take fk = 1. This is in most (though not all) cases a worst-case assumption. No data on processing 
are needed and therefore this route is useful in a first tier approach. 

3.2 Fixed processing factors 
Use fk = fk,upp. Available information on specific processing effects is used, although still in a 
cautionary way (in accordance with the precautionary principle). Note that fk,nom values need not to be 
specified. When both are specified, the highest value will be used; worst case scenario.  

3.3 Distribution based processing factors 
Sample fk using a normal distribution. Log or logit transformed values of fk,nom and fk,upp are used to 
define the first two moments of the normal distribution. Two situations are distinguished depending 
on the type of transformation.  

a) The logarithms of fk,nom and fk,upp are equated to the mean and the 95% one-sided upper 
confidence limit of a normal distribution. This normal distribution thus is specified by a mean 
ln(fk,nom) and a standard deviation {ln(fk,upp) – ln(fk,nom)}/1.645. Values are drawn from this 
distribution in the MC-simulations. Processing factors fk will be nonnegative. Note: fk,upp and 
fk,nom values equal to 0 are replaced by a low default value (0.01); this is useful 
computationally to avoid problems with logarithms.  

b) The logits of fk,nom and fk,upp are equated to the mean and the 95% one-sided upper confidence 
limit of a normal distribution. This normal distribution thus is specified by a mean logit(fk,nom) 
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and a standard deviation {logit(fk,upp) – logit(fk,nom)}/1.645. Values are drawn from this 
distribution in the MC-simulations. Processing factors fk will be between 0 and 1. Note: fk,upp 
and fk,nom values equal to 0 and 1 are replaced by default values (0.01 and 0.99); this is useful 
computationally to avoid problems with logits. 

The user should keep in mind that, in case of a lognormal distribution, fk,nom defines the median, 
while fk,upp quantifies skewness. The same holds for the logistic. Usually, a logarithm will be the 
standard transformation, but for very skew distributions (see Figure 3) occasionally values above 
1 are sampled (upper row, 1 , 3  and 5  plot). A logit transformation should be considered 
instead. 

rst rd th

 
To process simultaneously some foods using fixed factors and others distribution based, choose 
‘processing (distribution based)’. Now, fixed factors fk are obtained by providing only fk,upp whereas 
random factors fk are sampled when both fk,upp and fk,nom are given.  
It is not necessary to fill out a complete list of processing factors for all foods. Missing values of fk,nom 
and fk,upp are, by default, replaced by the value 1.  

 

 
Figure 3: Lognormal (upper row) and logistic (lower row) distributions for various values of 
fk,nom (= nom) and fk,upp (= upp)  

4  Modeling of unit variability 

4.1 Variability in composite samples 
Variability in concentrations between individual units is a relevant factor in the assessment of short-
term dietary intake of substances in food. It is addressed separately because monitoring measurements 
cmk are typically made on homogenised composite samples, both in controlled field trials and in food 
monitoring programs. Such a composite sample for food k is composed of nuk units with nominal unit 
weight wuk each. The weight of a composite sample is therefore wmk = nuk × wuk . This weight is often 
larger than a consumer portion, e.g. a typical composite sample of 20 sweet peppers weighs 3.2 kg, 
whereas daily consumer portion weights in the Dutch Food Consumption Survey 1997 ranged from 
0.08 g to 458 g.  
How should monitoring data be used to estimate the raw food concentration levels cijk in consumer 
portions? Although the mean level of cmk may be a fair estimate of the mean level of cijk, the 
variability of cmk is not appropriate to estimate the variability of cijk. In smaller portions more extreme 
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values may occur more readily, and thus acute risks may be higher than would follow from a direct 
use of the composite sample data. 
Therefore, the FAO/WHO Geneva Consultation recommended to include a variability factor (v) in the 
non-probabilistic calculation of an International Estimate of Short Term Intake (IESTI) (FAO/WHO 
1997). The IESTI has been adopted by the Joint Meeting of FAO and WHO experts on Pesticide 
Compounds in food in 1999, and was modified in 2000 to reflect that the supply for actual 
consumption on a given day is likely to be derived from a single lot (JMPR 1999, 2000). In both the 
original and the modified definition, the variability factor is used in a similar way. The basic idea is 
that the concentration of a substance for the first unit eaten is multiplied by v, whereas this factor is 
not applied for any remaining part of the daily consumption. 
 
In the original presentation v was meant to reflect “the ratio of a highest concentration in the 
individual product unit to the corresponding concentration seen in the composite sample” 
(FAO/WHO 1997). It was not clearly stated what was meant with “a highest concentration”. Should 
this be the maximum concentration found or should it be a high percentile, e.g. p95 or p97.5? In 
practical terms this did not matter too much, because little data were available. Therefore the 
FAO/WHO Consultation recommended to take initial values of v equal to “the number of units in the 
composite sample as given in Codex sampling protocols”. This will provide a conservative estimate of 
the concentration of the substance in the first unit, based on the assumption that all of the content of 
the substance present in the composite sample are present in this single unit. If Codex sampling 
protocols are used, then the number of units per composite sample is 5 for large crops (unit weights > 
250 g) and 10 for medium crops (unit weights 25-250 g). For small crops (< 25 g) a variability factor 
v = 1 was recommended. More recently, it has been proposed to replace the default value 10 with 7. 
For foods which are processed in large batches, e.g. juicing, marmalade/jam, sauce/puree, 
bulking/blending a variability factor v = 1 is proposed. To summarise: 
 
unit weight, wu FAO/WHO default variability factor, v 
< 25 g 
25 –250 g 
> 250 g 
juicing, marmalade/jam, sauce/puree 

1 
7 
5 
1 

Table 1: Default variability factors for IESTI calculations 

The Consultation specifically recommended to replace these default values with more realistic values 
obtained from studies on actually measured units. A working group of the International Conference on 
Pesticide Residues Variability and Acute Dietary Risk Assessment held in York in 1998 suggested to 
define v, for samples taken from controlled trials, as the 97.5th percentile of the unit levels divided by 
the sample mean (Harris et al. 2000), and this is used in the current version of MCRA as the defining 
relation.  

4.2 Deterministic modeling: IESTI  
The IESTI is a deterministic estimate of the short-term intake of a substance on the basis of the 
assumptions of high daily food consumption per individual and highest concentrations from 
supervised trials. The IESTI is expressed per kg body weight and has only been defined for single 
foods. 
 
Calculations of IESTI (according to FAO 2002) recognise four different case (1, 2a, 2b and 3). In 
cases 1 to 3 the following definitions are used: 

LP:  Highest large portion reported, calculated as the 97.5th percentile of the distribution of  
consumed portions on days with positive consumption of the food (kg food/day) 

HR:  Highest residue (= concentration ) in composite sample, mg/kg 
bw:  Mean body weight, kg; in MCRA values may be input by the user, or weighted means 
 are calculated over individuals with the number of days on which they consumed the 

food as weights  
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U:  Unit weight of the edible portion, kg. 
v:  Variability factor – the factor applied to the composite value to estimate the 

concentration in a high-value unit 
MR:  Median residue (= concentration) in food, mg/kg 

 
Case 1: 
The concentration of the substance in a composite sample reflects the concentration in meal-sized 
portion of the food (unit weight is below 25 gr). 
 

 IESTI = 
bw

HRLP *
 

 
Case 2: 
The meal sized-portion, such as a single fruit or vegetable unit might have a higher concentration than 
the composite (whole fruit or vegetable unit weight is above 250 gr). Case 2 is further divided into 
case 2a and 2b. 
 
Case 2a:  
Unit edible weight of raw food is less than large portion weight. 
 

 IESTI = 
bw

HRULPvHRU *)(** −+
 

 
The formula is based on the assumption that the first unit contains concentartions at the HR*v level 
and the next one contains concentrations at the HR level, which represents the concentrations in the 
composite from the same lot as the first one. 
 
Case 2b: 
Unit edible weight of raw food exceeds large portion weight. 
 

 IESTI = 
bw

vHRLP **
 

 
The formula is based on the assumption that there is only one consumed unit and it contains 
concentrations at the HR*v level. 
 
Case 3: 
For those processed foods where bulking or blending means that the median represents the likely 
highest concentration. 
 

 IESTI = 
bw

MRLP *
 

 
When an acute reference dose is available, the calculated IESTI values are also expressed as a 
percentage of the ARfD. 

4.3 Probabilistic modeling: specifying distributions 
How should variability between units be incorporated in probabilistic modeling of acute risks? In 
probabilistic modeling we generate consumption amounts and concentrations which will be 
multiplied, summed over foods and divided by body weight to estimate the intake. However, the 
concentration cmk will usually be derived from a distribution based on measurements on composite 
samples. Assume that a batch of food contains N units (N large, for the statistics we assume infinite). 
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The monitoring measurement cmk is made on a composite sample of nuk units (for example, nuk = 5). 
These units are assumed to be representative of the batch. Unit concentrations cijk are to be simulated 
for one or more units from this batch that will be part of a consumption portion in the MC-simulation. 
Basically, there are three possibilities depending on the availability of data: 
1. use actual measurement data on individual units; 
2. use variability factors or other summary statistics based on measured individual units; 
3. use conservative assumptions. 
In MCRA only methods under categories 2 and 3 are implemented. The first approach has been 
pioneered in the context of a large UK survey on pesticides in fruit (Hamey 2000).  
 
The following three models are discussed in more detail: 
1. beta model, requires knowledge of the number of units in a composite sample, and of the 

variability between units (realistic or conservative estimates); 
2. bernoulli model, requires only knowledge of the number of units in a composite sample (results 

are always conservative); 
3. lognormal model, requires only knowledge of the variability between units (realistic or 

conservative estimates). 
 
Preferably realistic estimates of unit variability are to be used, either expressed as coefficients of 
variation cv (standard deviation divided by mean) or as variability factors v (defined in MCRA as 
97.5th percentile divided by mean). However, often such information is not directly available. In such 
cases it is customary to select high values for the variability factor, either based on collections of 
variability factors for other substances/foods, or calculated as the theoretical maximum derived from 
the number of units in a composite sample. 
 
How to translate the concept of conservatism to the probabilistic model? In a non-probabilistic model 
a higher value of v gives a higher IESTI, but in a stochastic model a higher variability means more 
spread around a central value. In general this means that higher values, but also lower values can be 
generated. In order to retain an overall conservatism it is therefore necessary to replace all simulated 
values below the monitoring level (cmk) with cmk itself. 
 
It is common to use default conservative values, such as the FAO/WHO variability factors in Table 1. 
However, one should be aware that two entirely different interpretations are possible: 
1. The default variability factor may be defined in the same way as a data-based variability factor (v 

= 97.5th percentile/mean). For example, it may be an expert opinion based on seeing many actual 
data sets from trials, that a certain value v can be used as a conservative value for other situations 
(see e.g. Table 1 in Harris et al. 2000). Then we might use the beta or the lognormal model, 
censoring these distributions at cmk to guarantee conservative behaviour. For the beta model 
additional information on the number of units in a composite sample is needed. 

2. Alternatively, one can revert to the original definition and interpret FAO/WHO variability factors 
as the number of units in the composite sample (v = nuk). In this case, without other information, 
the only workable model is the bernoulli model. 

 
Table 2 describes the four options when a parametric form for unit variability is specified. 
Measurements are simulated for a new unit in the batch using a lognormal distribution or for a unit 
belonging to the composite sample leading to the use of the beta distribution. 
 
 Simulate for new unit in batch  

 
(lognormal distribution) 

Simulate for unit belonging to 
composite sample 
(beta distribution) 

Estimates of unit 
variability  are 
realistic (R) 

• no censoring at cmk 
• no upper limit to the unit 

concentration 

• no censoring at cmk 
• unit values never higher than 

kk cmnu ⋅   
Estimates  of unit • unit values will be left-censored • unit values will be left-censored at 
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variability are 
conservative (C) 

at cmk 
• no upper limit to the unit 

concentration 

cmk 
• unit values never higher than 

kk cmnu ⋅   
Table 2: Choices for estimated variability factors. cmk = value of composite sample 
oncentration, nuk  =  number of units in composite sample. c 

4.3.1 Beta model 
With this model MCRA will generate values for individual unmeasured units of a measured 
composite sample. If cmk is the concentration measured (or simulated) for the composite sample in 
monitoring for food k, then the concentration in any unit can be no larger than cmax = nuk * cmk , where 
nuk is the number of units in the composite sample. Under the beta model simulated unit values are 
drawn from a bounded distribution on the interval (0, cmax). The parameter for unit variability is 
specified as a coefficient of variation cvk or as a variability factor vk of the unit values in the composite 
sample. 
The standard beta distribution is defined on the interval (0, 1) and is usually characterised by two 
parameters a and b, with a>0, b>0 (see e.g. Mood et al. 1974). Alternatively, it can be parameterised 
by the mean µ = a/(a+b) and the variance σ2 = ab(a+b+1)-1(a+b)-2, or, as applied in MCRA, by the 
mean µ and the squared coefficient of variation cv2 = ba-1(a+b+1)-1. Note that the coefficient of 
variation is the same for the unscaled and the scaled distributions. 
For the simulated unit values in each iteration of the program we require an expected value cmk. This 
scales down to a mean value µ = cmk/cmax = 1/nuk in the (standard) beta distribution. From this value 
for µ and an externally specified value for cvk the parameters a and b of the beta distribution are 
calculated as: 
 

( ) 11 −−= knuba  

( )( )
2

211

kk

kkk

cvnu
cvnunub −−−

=  

 
From the second formula it can be seen that cvk should not be larger than 1−knu  in order to avoid 
negative values for b. 

When the unit variability is specified by a variability factor 
k

k
k cm

pv 5.97
=  instead of a coefficient of 

variation cvk then MCRA applies a bisection algorithm to find a such that the cumulative probability 
for .  975.0)],([ =baBetaP ( )1−= knuab

Sampled values from the beta distribution are rescaled by multiplication with cmax to unit 
concentrations cijk on the interval (0, cmax).  
In the case that variability has been estimated by a conservative high value, all sampled values lower 
than cmk are replaced by cmk. 
In Figure 4, for several values of the coefficient of variation and number of units the beta distribution 
is shown with estimated parameters a and b. When the parameter for unit variability is high (upper 
left plot) the ratio of the spikes on the extremes (3:1) represent the 75% probability at c  = cm  and 
25% probability at c  = c . In the upper right plot, the parameter for unit variability is smaller and 
some unit values in between the two extremes are sampled. The ratio of the spikes is about 5:1, which 
is according to the number of units in the composite sample. In the lower left plot, variability is low 
and unit values are sampled around the monitoring value. In the extreme case, when unit variability is 
close to zero the monitoring value itself is sampled and a spike occurs (not shown ). The lower right 
plot shows an intermediate situation, moderate to high variability. 

ijk k

ijk max
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cvk =1.732; nuk=4; a=0.00005; b=0.00015 

 
cvk =1.20; nuk=6; a=0.4; b=2

 
cvk=0.62; nuk=6; a=2; b=10 

 
cvk =1.46; nuk=4; a=0.1; b=0.3

Figure 4: Standard beta distribution for different values of the coefficient of variation cvk and 
number of units nuk in the composite sample. x axis from 0 to 1.  

4.3.2 Lognormal model  
With the beta and bernoulli models, MCRA simulates concentrations for units in the composite 
sample, such that the concentration of an individual unit can never be higher than the monitoring 
measurement multiplied by the number of units in the composite sample cmax = nuk * cmk . 
With the lognormal model for unit variability MCRA simulates concentrations for new units in the 
batch from which the composite sample was taken. Effectively the number of units in a batch is very 
large, so in this case there is no practical upper limit to the concentration that can be present.  
The lognormal distribution is considered as an appropriate model for many empirical positive 
concentration distributions. With the lognormal model MCRA assumes a lognormal distribution for 
unit concentrations. Let this distribution be characterised by μ and σ, which are the mean and standard 
deviation of the log-transformed concentrations. The unit log-concentrations are drawn from a normal 
distribution with mean ( )ikcmln=μ .  
Also for the lognormal model MCRA allows two choices to specify the parameter for the unit 
variability. The parameter is specified as a coefficient of variation (cvk) or as a variability factor (vk). 
The coefficient of variation cv is turned into the standard deviation σ on the log-transformed scale 
with: 
 σ = √ln(cv2 + 1) 
 
The conversion of a variability factor into parameters of the lognormal distribution requires an exact 
definition of what is meant. Here, the variability factor is defined as the 97.5th percentile of the 
concentration in the individual measurements divided by the corresponding mean concentration seen 
in the composite sample. A variability factor v is converted into the standard deviation σ as follows: 

 
2

2
2/196.1

2/1

96.15.97 σσ
σμ

σμ
−

+

+

=== e
e
e

mean
pv   

 
with μ and σ representing the mean and standard deviation of the log-transformed concentrations. So 

 
 ln(v) = 1.96σ – 1/2σ2 

 18 



 
Solving for σ gives: σ2 – 2*1.96σ – 2log(v) = 0, with roots for σ according to: 

 
 σ = 1.96 ± √(1.962 +2log(v)) 
 

The smallest positive root is taken as an estimate for σ . 
 
In the case that variability has been estimated by a conservative high value, all sampled values lower 
than cmk are replaced by cmk. 

4.3.3 Bernoulli model  
In practice, measurements on individual units to obtain a measure for unit variability are not very 
common. The bernoulli model is a limiting case of the beta model, which can be used if no 
information on unit variability is available, but only the number of units in a composite sample is 
known (see van der Voet et al. 2001). 
 
As a worst case approach we may take cvk as large as possible. When cvk is equal to the maximum 
possible value 1−knu , the (unstandardised) beta distribution simplifies to a bernoulli distribution 
with probability (nuk – 1)/nuk (or (vk-1)/ vk ) for the value 0 and probability 1/nuk  (or 1/vk ) for the 
value cmax = nuk * cmk..  
In MCRA values 0 are actually replaced by cmk, to keep all values on the conservative side. For 
example, with nuk = 5, there will be 80% probability at cijk = cmk and 20% probability at cijk = cmax.. 
When the number of units nuk in the composite sample is missing, the nominal unit weight wuk is used 
to calculate the parameter for unit variability.  

4.3.4 Estimation of intake values using the concept of unit variability 
• For each iteration i in the MC-simulation, obtain for each food k a simulated intake xik , and a 

simulated composite sample concentration cmik . 
• Calculate the number of unit intakes nuxik in xik (round upwards) and set weights wikl equal to unit 

weight wuk, except for the last partial intake, which has weight ( ) kikikikl wunuxxw 1−−= . 
• For the beta or bernoulli distribution: draw nuxik simulated values bcikl from a beta or bernoulli 

distribution. Calculate concentration values as cikl = bcikl * cmk, max = bcikl * cmk * nuk. Sum to obtain 
the simulated concentration in the consumed portion: 

 

ik

nux

l
ikliklik xcwc

ik

∑
=

=
1

 

 
• For the lognormal distribution: draw nuxik simulated logconcentration values lcikl from a normal 

distribution with mean ( ikcmln= )μ  and standard deviation σ. Back transform and sum to obtain 
the simulated concentration in the consumed portion: 

 

ik

nux

l

lc
iklik xewc

ik
ikl∑

=

=
1

 

5  Betabinomialnormal model (BBN) 
Through the assumed independence of consumption data and concentration values (a most reasonable 
assumption) the daily intake of individual i on day j can be calculated as the aggregated sum over 
foods of consumption amount per kg body weight times average concentration. For empirical 
modeling of concentrations, the average concentration of all available concentration measurements on 
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a food is taken, with non-detect measurements entered as zero, LOR2
1 or , or any other 

fraction of as specified in the input options. For parametric modeling of concentrations, the 
average concentration per food is calculated as: 

LOR
LOR

 
model average concentration for food k 

empirical 
∑
=

=
n

i
ik

k
k x

n
c

1

1
 (nondetect xik may be replaced by f x LOR) 

mixture of non-detect spike and 
lognormal  

)*()1( kkkkk LORfppc +−= μ  

mixture of non-detect spike 
and truncated lognormal 

)*()1( kkkkk LORfppc +−= μ  

censored lognormal 
kkc μ=  

censored lognormal with 
estimated LOR 

kkc μ=  

mixture of zero spike and 
censored lognormal 

kkk pc μ)1( 0−=  

 
where ck  is the average concentration (on logscale) for food k, xik concentration value, kμ the 
estimated mean, pk  the fraction of nondetects, (1 – pk), the fraction of detects and p0k, the estimated 
fraction of true zero’s (or true nondetects).  

5.1 Intake frequency distribution 
Let n and npos be the total number of days per individual (for all individuals equal) and the number of 
days with a positive intake, respectively. Then npos is modelled using a betabinomial distribution 
with binomial totals n and probabilities p. The probabilities, p, are assumed to follow a beta 
distribution: 
 

 f(p)= 
)()(
)(
βα
βα

ΓΓ
+Γ

pα-1(1-p)β-1 

 

With ),( βαB = 
)(
)()(

βα
βα

+Γ
ΓΓ

, the probability that npos equals x can then be written as: 

 

 P(npos=x) = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
x
n

),(
),(

βα
βα

B
xnxB −++

,  x = 0, 1 … n 

 
This distribution is known as the betabinomial distribution. 
 
The mean and variance of a beta distribution are: 

 
 )/( βαα +   

and , respectively. )]1()/[()( 2 +++++ βαβαβααβ n
 
Re-parameterizing by )/( βααπ += and )1/(1 ++= βαϕ  is a more stable and interpretable 
parameterization. It can be shown that the mean and variance of npos are equal to nπ  and 
n ])1(1)[1( ϕππ −+− n , respectively.  
 
Note that the first part of the variance n )1( ππ −  equals the binomial variance; the second part is the 
so-called overdispersion factor.  
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Fitting the betabinomial model with maximum likelihood gives estimates π̂  and ϕ̂  for the 
parameters π and φ. Back-transformation  gives the following estimates for α  and β  : 
 

ϕϕπα ˆ/)ˆ1(ˆˆ −=  and  ϕϕπβ ˆ/)ˆ1)(ˆ1(ˆ −−=
 
The distribution of the probability that a individual eats a food with a substance at a certain day is 
then: 

Beta(α̂ , ). β̂  

5.2 Modeling the positive intake amounts 

5.2.1 Power or log transformation  
First, to achieve a better normality, the positive daily intake amounts are transformed. The user can 
choose a logarithmic transformation ( )yyf ln)( =  (no parameters to be estimated) or a power 
transformation  (one parameter to be estimated). In the latter case the optimal power is 
determined on the grid 

qyyf =)(
{ }100

1
5.3

1
3
1

5.2
1

2
1

5.1
1 ,...,,,,,,1,2,10 , with a further refinement grid search around 

the best fitting value. If a power 100
1 gives the best fit in this grid search, then the logarithmic 

transformation is selected (Note that a logarithmic transform corresponds theoretically to ). The 

goodness of fit is determined by minimising the residual sum of squares: of a 
regression of normal Blom scores on the power-transformed daily intakes. Normal Blom scores are 
(Tukey 1962): 

0=q
2

1 ))(( qyiz β−
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⎞
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⎝
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where i is the rank of the nth non-zero daily intake, n, the total number of non-zero intakes and ( )⋅Φ−1  
is the inverse of the standard normal cumulative distribution function. 

5.2.2 Model with between-individual and within-individual variance component 
The transformed positive intake amounts are modelled in a ML analysis with random terms individual 
and interaction individual.day to estimate the between-individual and within-individual variance 
component. For a logarithmic transformation : 
 
 ln(yij)= μ + ci+ uij
 
and a power transdormation (with power q) 
 
 yij

q = μ + ci+ uij
 
where ci and uij are the individual effect and interaction effect, respectively. These effects are assumed 
to be normally distributed N(0, 2σ between) resp. N(0, 2σ within).  
 
If the positive intake amounts are logarithmically transformed it can be shown that the expectation 
and variance of the positive intake amount per random consumption day of a random individual are: 
 
 E(yij)  = exp(μ + ½ 2σ within) 

 Var(yij)  = 2σ between 

 21 



For the power transform the expectation equals: 

E(yij)  =  22)1(
2
1 σμλλμ λλ −−+ within (Dodd et al., 2006) 

5.3 Modeling usual daily intake  

5.3.1 Analytical integration 
For logarithmic transformed intake amounts, a analytical solution is available (not implemented in the 
MCRA program).  
The usual intake is defined as the intake amount per random intake day (over both intake and non-
intake days) of a random individual. To obtain the usual intake the E(y) from 5.2.2  has to be 
multiplied by the probability π from 5.1 . If π was constant for all individuals the usual intake would 
have a lognormal distribution with mean ln(π) + μ + ½ 2σ within and variance 2σ between. But because 
we have assumed in 5.1 that individuals have different p’s coming from a beta distribution, the 
probability that a individual has a usual intake lower than say an intake limit z equals: 
 

 P(py ≤  z) = ypp
p

∧=∫ ( ≤
p
z

) =  ypp
p

ln( ∧=∫ ≤ (ln( z) – ln (p) ) )

 )
ˆ

ˆ ½ˆ)ln()ln(
()1(

)ˆ()ˆ(
)ˆˆ( 2

1ˆ1ˆ
1

0 between

within

p

pz
pp

σ
σμ

βα
βα βα −−−

Φ−
ΓΓ
+Γ −−

=
∫ dp 

 
where Φ is the cumulative normal distribution. 

5.3.2 Numerical integration 
If the positive amounts are transformed by a power transformation the power transformed values can 
not generally be written in terms of a probability distribution as in 5.3.1 : the distribution of the usual 
intakes has to be calculated numerically.  
However, in the MCRA program for both power and logaritmic transformation, the usual intake 
distribution is obtained by numerical integration.   
The distribution of the usual intakes can be obtained as follows: 
 
1. Draw 1 value of a normal distribution with mean μ and variance 2σ between  
2. Calculate the inverse transformation of the value of Step 1. 
 

2a. For a logarithmic transformation: x = exp(μ +σ  between ln y) + ½ 2σ within. 
 

2b. For a power transformation: x =( μ + σ  between e)λ + λ(λ – 1) ( μ + σ  between e)λ- 2  2σ within/2  
 

with q  = 1/ λ, the power to approximately normality, e  standard normal distributed N(0, 1) 
(Dodd et al. 2006, p1646). 

 
3. Draw 1 value of the beta distribution 
4. Multiply the value of Step 2. with the value of Step 3. 
 
The result is one random draw from the  distribution of usual intakes. 
R  epeat Steps 1 till 4 a great number of times, say 50000.  
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5.3.3 Extending the models 
The intake frequency and transformed intake amount model can be extended to describe the effect of 
a covariable and/or cofactor. Then, usual intakes are dependent on explanatory variables. 
 
For frequencies:   
cofactor: logit(π) = β 0l  
covariable: logit(π) = β 0 + β 1 f(x1; df) 
both:  logit(π) = β 0l+ β 1 f(x1; df)  
Interaction: logit(π) = β 0l+ β 1l f(x1; df) 
 
For amounts 
cofactor: transf(yij) = β 0l + ci + uij

covariable: transf(yij) = β 0 + β 1 f(x1; df) + ci + uij

both:  transf(yij) = β 0l+ β 1 f(x1; df) + ci+ uij

interaction: transf(yij) = β 0l+ β 1l f(x1; df) + ci+ uij  
 
where l=1…L and L is the number of levels of the cofactor,  yij , the amount, x1 is the covariable, f is a 
spline or polynomial function, df the degrees of freedom, ci and uij are the individual effect and 
interaction effect respectively. These effects are assumed to be normally distributed N(0, 2σ between) 

resp. N(0, 2σ within). The degree of the function is determined by backward or forward selection. 
 
The usual intake is calculated for the combination of all levels of the cofactor and a specified number 
of values of the covariable.  

6  Logisticnormalnormal model (LNN) 
Daily intakes are calculated as described in section 5 . In the BBN model, frequencies are modelled 
using a betabinomial distribution. In the logisticnormalnormal (LNN) model, the betabinomial part is 
replaced by a logistic regression transforming the data to normality using the logit transform and 
modeling the individual effects as a random term. The amounts are transformed and modelled as 
described by the BBN model. 
 
In notation, for probability p: 
  
 logit(p) = log(p/1-p) = μ i + ci 

 

where μ i represents the person specific fixed effect model and ci  represent person specific random 
effects with estimated variance component 2σ between. 

7  Discrete/semi-parametric model (ISUF) 
Nusser et al. (1996) describe how to assess chronic risks for data sets with positive intakes (a small 
fraction of zero intakes was allowed, but then replaced by a small positive value). The modeling 
allowed for heterogeneity of variance, e.g. the concept that some people are more variable than others 
with respect to their consumption habits. However, a disadvantage of the method was the restricted 
use to contaminated foods which were consumed on an almost daily basis, e.g. dioxin in fish, meat or 
diary products. The estimation of usual intake from data sets with a substantial amount of zero intakes 
became feasible by modeling separately zero intake on part or all of the days via the estimation of 
intake probabilities as detailed in Nusser et al. (1997) and Dodd (1996). In MCRA, a discrete/semi-
parametric model is implemented allowing for zero intake and heterogeneity of variance following the 
basic ideas of Nusser et al. (1996, 1997) and Dodd (1996). 
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Nusser et al. (1996, 1997) describe a procedure for the assessment of chronic risks using non-normal 
dietary intake data. Principally, their method consists of four steps: 
1. transforming the daily intake data to approximate normality using a power function or log 

transformation 
2. fitting a grafted polynomial function to the power or log transformed daily intakes. The 

polynomial provides some flexibility against power transformed components that are still 
deviating from normality, 

3. estimating the parameters of the usual intake distribution in the transformed scale, and 
1. estimating the percentiles of the distribution of usual intakes in the original scale. 

7.1 Power or log transformation  
Daily intakes are calculated as described in section 5 . First, to achieve a better normality, the positive 
daily intake amounts are transformed. The user can choose a logarithmic transformation ( )yyf ln)( =  
(no parameters to be estimated) or a power transformation  (one parameter to be estimated). qyyf =)(

7.2 Spline fit 
To achieve a better normality, a second transformation (optional) is performed: a spline function 

is fitted to the logarithmically or power transformed data t as a function of the normal Blom 
scores. The spline function is a grafted polynomial consisting of cubic polynomials between p = 3 
joint points (knots) and linear functions in the two outer regions. The daily intakes are transformed by 
interpolating from t to , using the fitted spline function.  

)(zgt =

)(1 tgx −=
After a successful transformation the daily intakes x will resemble Blom normal scores and their mean 
and total variance will therefore be approximately 0 and 1. The normality of the transformed values x 
is checked with the Anderson-Darling test. In the case of a spline transformation, if normality is 
rejected at the 85% confidence level, then the number of knots p is increased and the spline fit is 
epeated (until a maximum of 22 knots). r 

7.3 Estimation of the parameters of the usual intake distribution 
Variance components for between and within-individual information are fitted to the transformed 
non-zero daily intakes x using the model: 

  

 
In this model the total variance of the daily intakes is divided into a between-individual component 
and a within-individual component. The within-individual variance component can be heterogeneous, 
that is, it can be different for different individuals. In the model the between-individual variance 

and the mean and the variance of the within-individual variance component distribution ( and 
) are estimated using standard statistical methods (ANOVA). Further, a test statistic MA4 is 

calculated to test whether the heterogeneity of variances is significant (see Dodd 1996 for details). 
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The estimate of the between-individual variance is the basis for the estimation of the distribution 
of usual intake. The distribution of usual intakes on non-zero intake days in the x scale is represented 
by a set of 400 normal Blom scores (which themselves represent the standard normal distribution) 
multiplied by s

2
Bs

1: . The same calculation is applied to user-requested percentiles 
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7.4 Back transformation and estimation of usual intake 
The 400+ values xi are back-transformed to the original scale. This is simple if no spline function has 
been estimated. If a spline function has been used, then it is a rather complicated procedure, because 
the spline function g was developed for daily intakes, not usual intakes. The following steps are made: 

1. First the 400+ values xi are expanded in a set of 9 * 400 values representing the distribution of 
daily intakes around each of the 400 points; 

2. These 9 * 400+ values are back transformed using the functions g and f , and the sets of 9 
values are then recombined (by weighted averaging) into 400 usual intake values yi ; 

3. A spline function g1 ,especially adapted for usual intakes, is now fitted to the 400 data pairs 
(xi, ti), where )( ii yft = ; 

4. Finally the usual intakes on non-zero intake days are represented by the back-transform using 
this improved function: . ))(( 1 ii xgfy =

 
The user-requested percentiles are the additional values (i > 400) in the 400+ set. The 400 ypy i 
values define the cumulative distribution function by: 
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The distribution is adapted in order to account for days with zero intake of individuals (defined here 
as individuals who have a positive probability of intake on any day, and therefore a non-zero usual 
intake). This is done by estimating the distribution of individual intake probabilities. This distribution 
is approximated via a number of classes (e.g. 21 or 51, can be selected by the user) arranged by the 
proportion of days on which there is a positive intake (pm). Using a binomial distribution for each 
class, the fraction of individuals in each class ( Mmm ,...,0; =θ ) is estimated by optimising the fit 
of the predicted proportions of individuals with 0, 1, 2, ... intake days to the observed proportions. The 
number of parameters to be estimated is usually higher than the number of possible outcomes for a 
individual (e.g. 3 when there are two days per individual), and therefore a smooth approximation is 
made using a modified minimum chi-squared estimator. See Dodd (1996) for details. Only the 
fraction of non-consumers ( 0θ ) is estimated separately with no restriction to be similar to the other 

mθ . It can be noted that the distribution of individual intake probabilities can be better estimated 
when the number of days per individual in the consumption survey becomes higher. With only 2 days 
per individual the procedure gives a rather artificial distribution, often with an estimated 0θ of zero 
This step can be time-consuming. Therefore, the number of iterations in the estimation procedure can 
be limited by the user. In our experience it is not generally necessary to use 50,000 iterations as in 
Dodd (1996). 
The estimated distribution of individual intake probabilities ( ) is used to transform the 
distribution of usual intake on non-zero intake days ( ) to the distribution of usual intake for 

individuals ( ) and finally to the distribution of usual intake for the entire population ( ). These 
transformations are based on the relation: 
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which basically says that to obtain a certain level of usual intake u we should consider a different 
level ( u/pm ) for the class of individuals which consume only on a fraction pm of days. See Dodd 
(1996) for details of the computational procedure. Linear interpolation based on the 400 values of 
the distribution is then used to compute representations of the cumulative distribution functions for 
individuals only and the entire population. 

yF
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8  Observed individual means (OIM) 
The usual intake distribution for a population is estimated with the empirical distribution of within-
individual means. Each mean is the average of all single-day intakes (see 5 ) for an individual. The 
mean value for an individual still contains a considerable amount of within-individual variation. As a 
consequence, the distribution of within-individual means has larger variance than the true usual intake 
distribution and estimates using the OIM-method are biased, leading to a too high estimate of the 
fraction of the population with a usual intake above some standard. 

9  Acute risk assessment and the BBN model 
An acute risk assessment may be followed by an analysis where the acute intake distribution is related 
to a covariable and/or cofactor. Through MC-sampling, a large number of intakes is generated by 
combining randomly chosen consumption patterns of individuals i on day j with randomly chosen 
concentrations in the consumed foods. The replicates generated for individual day ij are further 
indexed by k to represent differences due to concentration variability. We ignore the finiteness of the 
concentration data, that is, we ignore the identity of the chosen concentration values in the original 
concentration dataset.  

9.1 Intake frequency model 
Let and be the total number of simulated intakes per individual, and the number of simulated 
positive intakes, respectively. Then  is modelled as a function of e.g. age (and/or other 
individual characteristics), using a betabinomial distribution with binomial totals  and 
overdispersion parameter 

in inpos

inpos

in
φ  (independent of age). The fitted binomial probabilities are ( )ix xf=π̂  , 

where xi is the age of individual i, and the estimated overdispersion parameter is . φ̂

9.2 Intake amount model 
For the positive intakes, consider power of logarithmically transformed values yijk. (see 5.2.1 ) 
Average over replicates to obtain individual day averages y . These values are modelled in a ML 
analysis with random terms individual and individual.day as a function of age (and/or other individual 
characteristics), with the number of values per individual day (n ) as weights w  to correct for 
differences in the precision at the individual day stratum. The fitted values from the model are 

ij.

ij ij

( )ix xf=μ̂ , where x  is the age of individual i  i

9.3 Estimating the acute risk variability of positive intake amounts 
Correct the full set of simulated positive intakes by )(ˆ' ixijkijk yy μ−= . Estimate the variance  of 

. We denote the estimated variance as . Now for each selected age x the transformed positive 

intake distribution is modelled as normal with mean 

2
'yσ

ijky' 2
'ˆ yσ

( )xfx =μ̂  and variance . 2
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9.4 Estimating the acute intake distribution 
Acute intake distributions dependent on a covariate are obtained by numerical integration. For each 
combination of levels of the covariable and cofactor, intake frequency values and transformed intake 
amounts are simulated and multiplied. This results in a number of distributions each one representing 
the acute intake distribution corresponding to a specific combination of levels of the covariates.  
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10  Brandloyalty and marketshares 
Different brands of a food product may differ in levels of chemical substances or contaminants. For 
example, brands of potato crisps may have different levels of acrylamide due to differences in the 
sugar content of used potato varieties or differences in baking procedure (temperature, baking time). 
If both consumption data and concentration data are measured at the brand level, this presents no 
special difficulties for exposure assessment. Each brand is then just treated as a separate product. 
However, in practice brand information is often available for the concentration data, but not for the 
consumption data. In such cases it is necessary to have additional information on the consumption of 
the different brands.  
For a certain type of product, market share data are often available specifying the percentages of each 
brand. Ideally these percentages are weight percentages, but sales percentages may be used as a 
proxy. 

10.1 Acute health effects 
For acute health effects market shares are all that is needed to adapt a probabilistic exposure 
assessment. For each simulated consumption a brand can be selected with a probability proportional 
to the market share, and then a concentration value can be sampled from the distribution of 
concentrations specific for that brand. 

10.2 Chronic health effects 
In the case of chronic health effects we need additional information. It now becomes important to 
know if individuals always consume the same brand, or that they consume different brands, thus 
effectively averaging the concentrations of the different brands in their long-term food intake. The 
tendency to repurchase the same brand has become known as brand loyalty.  
There are two main approaches for modeling brand loyalty, known as the stochastic and deterministic 
approach (Odin et al. 2001). Whereas the stochastic approach just tries to give a satisfying description 
of observed brand loyalty behaviour, the deterministic approach tries to analyse the attitude of 
individuals towards brand selection in terms of a limited number of explanatory factors. In the context 
of dietary risk assessment it is typically the stochastic approach which is more useful. 
There is a simple stochastic model which has turned out to be extremely useful in analysing buying 
behaviour. This is the socalled Dirichlet model, first given in a comprehensive form by Goodhardt et 
al. (1984).  The surprising feature of this model is that it contains only one parameter for brand 
loyalty, implying that brand loyalty varies little, or relatively little, between competitive brands 
(Ehrenberg et al. 2004). Although this may seem a too simple representation at first, it has been found 
to give a close description of actual buyer behaviour in most cases of a systematic check across 34 
products categories (Uncles et al. 1994). 

10.3 The Dirichlet model adapted for probabilistic exposure assessment 
In a probabilistic model for chronic exposure asessment when brands are known for concentration 
data, but not for consumption data, we need the following information: 

1. the distribution of consumption by individuals on multiple days; 
2. for each brand: the distribution of concentrations in that brand of product; 
3. market shares of all brands of a product, and a brand loyalty factor L. 

 
Typically 1 and 2 will be in the form of empirical datasets, for example resulting from food 
consumption surveys and monitoring programmes, respectively. Alternatively, we can specify 
parametric distributions, with parameters that are fitted to data or just specified based on prior 
knowledge or assumptions in what-if scenarios.  
Technically the Dirichlet model for brand choice needs nbrand parameters αi (which should be 
positive real numbers). The average brand choice probability for each brand is αi/S, where 

. By definition, the market shares m∑= iS α i should be proportional to the brand choice 
probabilities, and thus to the parameters αi. This means that S, the sum of the alphas, is the only 
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additional parameter that should be specified, and indeed this is the parameter that determines brand 
loyalty. S=0 corresponds to absolute brand loyalty, and brand loyalty decreases with increasing S. We 
define as an interpretable brand loyalty parameter, where now L = 0 and L = 1 
correspond to the situations of no brand loyalty and absolute brand loyalty, respectively. 

1)1( −+= SL

 
Given empirical or parametric distributions of consumption and concentration values, the algorithm 
for chronic exposure assessment now operates as follows: 

1. collect consumptions for a large number of n of individuals, 
2. in case of market shares: simulate n selection probabilities from the Dirichlet distribution, 
3. estimate intake yijk for individual i on day j for food k as the weighted sum of the average 

concentration for B brands times consumption xijk and standardize for body weight.  In 

notation: 
i

B

b
ikbkbijk

ijk w

bcpcx
y

∑
== 1 , where weight bcpikb  is the brand choice probability b for 

food k of  individual i, ckb is the average concentration for brand b of food k. Note that  

sums to 1 for each individual i, ∑
=

B

b
ikbbcp

1

4. aggregate intakes over the number of foods p, 
5. proceed as usual 

11  Uncertainty analysis: resampling data sets and resampling 
from distributions 
In probabilistic risk assessment of dietary intake we use distributions which describe the variability in 
consumption within a given population of individuals and the variability of the occurrence and level 
of substances in the consumed foods. However, these calculations do not consider the amount of 
uncertainty that is due to the limited size of the underlying datasets. Typically, in a large number of 
simulations very many different combinations of consumption and concentrations are made. This 
leads to a smooth distribution of simulated intakes, and the impression of a very precise estimation of 
intake percentiles or other quantities of interest. It is essential to realise that the accuracy of the 
inference depends on the accuracy of the basic data.  
 
When doing an uncertainty analysis in MCRA a number of iterations is chosen, and in each iteration 
new inputs are resampled for a complete Monte Carlo analysis: 

1. Datasets (concentration data, individual data) are resampled from the original database 
(bootstrap methodology) 

2. Parametric inputs, such as portion size uncertainty and processing factors and their 
variabilities are resampled from parametric distributions. 

11.1 Resampling datasets 
A computer-based instrument to assess the reliability of outcomes is the bootstrap (Efron 1979, Efron 
& Tibshirani 1993). In its most simple, non-parametric form, the bootstrap algorithm resamples a 
dataset of n observations to obtain a bootstrap sample or resampled set of again n observations 
(sampling with replacement, that is: each observation has a probability of 1/n to be selected at any 
position in the new resampled set). By repeating this process B times, one can obtain B resampled 
sets, which may be considered as alternative data sets that might have been obtained during sampling 
from the population of interest. Any statistic that can be calculated from the original dataset (e.g. the 
mean, the standard deviation, the 95th percentile, etc.) can also be calculated from each of the B 
resampled sets. This generates a uncertainty distribution for the statistic under consideration. The 
uncertainty distribution characterises the uncertainty of the inference due to the sampling uncertainty 
of the original dataset: it shows which statistics could have been obtained if random sampling from 
the population would have generated another sample than the one actually observed. 
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In MCRA,  two type of data are combined: individual consumption data and concentration data. It 
makes sense to apply resampling to both type of data separately, in order to characterise the 
uncertainty in the final intake. In MCRA the uncertainty algorithm (when selected) is applied to: 
1. the multivariate consumption patterns and associated body weights: actually the data set of 

individuals is resampled, and all individual information (consumption patterns for all 
consumption days, body weight, and age) is coupled to the selected individual.  

2. the univariate concentration data sets: these are resampled independently for all foods. In 
principle, the uncertainty algorithm is applied to the dataset consisting of both non-detects and 
positive values; in practice, for a dataset with n0 non-detects and n1 positive values, the number of 
positive values in a resampled set is obtained as a draw from a binomial distribution with 
parameter ( )101 nnn +  and binomial total 10 nn + . Then, this number of values is selected 
randomnly from the set of n1 positive values. 

 
In MCRA the resulting uncertainty distribution of percentiles of the intake distribution is summarised 
by specifying empirical 2.5th , 25th, 75th and 97.5th percentiles. The outer percentiles constitute a 
central 95% confidence interval for the variability percentiles. However, for this it is necessary that 
the number of resampled sets B is high enough. The number of resampled sets  should be chosen 
depending on the confidence level wanted for the uncertainty interval. Typically 500-2000 resampled  
sets will be reasonable for a 95 % confidence interval (Efron & Tibshirani 1993, pp. 14-15, 275). 
 
The same uncertainty algorithm can also be applied to deterministic estimates which are calculated 
from data sets. For example the maximum concentration found in a resampled set will be different, if 
the actual maximum value in the original dataset has not been selected. Also data-based estimates of 
large portion and average body weight will vary. 

11.2 Resampling parametric distributions, processing 
Processing effects are modelled either by a fixed processing factor, or by a lognormal or logistic-
normal distribution (depending on the distribution type set in table Processingfactor).  
In the former case (fixed factor) the uncertainty distribution is lognormal or logistic-normal with the 
same mean μ as the fixed value, and with a standard deviation σunc which is calculated from the 
specified central; value (procnom) and an estimate of p95 of the uncertainty distribution 
(procnomuncupp).  
The calculation for the logistic-normal distribution (disttype 1): 
 

σunc ={logit(procnomuncupp) – logit(procnom)}/1.645,   
 
and for the lognormal distribution (disttype 2). 
 

σunc ={ln(procnomuncupp) – ln(procnom)}/1.645,  
 
Values lower than 0.01 or higher than 0.99 (disttype 1 only) are replaced by default values (0.01 and 
0.99); this is useful computationally to avoid problems. In each iteration of the uncertainty analysis a 
new value is drawn from this distribution to be used as a fixed factor in the Monte Carlo calculation. 
In the case of a processing factor distribution (describing the variability of processing factors) two 
uncertainties can be specified. First, the uncertainty about the central value μ can be specified as 
before using a parameter procnomuncupp. Secondly, the uncertainty about the variability standard 
deviation σvar can be specified by the number of degrees of freedom df of a modified chi-square 
distribution which is used to generate new values of σvar. Setting df very high means litte uncertainty, 
and  σvar will be almost equal in all iterations of the uncertainty analysis. Setting df close to 0 means a 
large uncertainty, and very different values of σvar  will be obtained in the iterations of the uncertainty 
analysis. 
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12  Portion size 
A new source of uncertainty may be distinguished by using 24-hour recall methods that quantify 
consumption using portions size and amounts of portions consumed as the primary measure of 
consumption. Although individual consumption data are expressed in grams per day, the primary data 
may be associated with uncertainty in portion size and amount or number of portions consumed. So, 
the primary data are unitweights (e.g. the weight of a portion shown on a photo, or the weight of a 
standard household measure) and amounts of units (e.g. the number of shown portions or the number 
of cups), the multiplication of both values is the amount consumed in grams. The corresponding 
portion size uncertainty is primarily connected with unitweights and amounts.  

12.1 Portion size uncertainty 
For the European Food Consumption Validation Project (EFCOVAL) the MCRA model for 
uncertainty is adapted specifically to the six quantification methods of EPIC-SOFT (Table 3).  
 
Method Unitweight (uw) Amount (a) 
Photographs (P) Standard portion in grams 

(Photo 1 of broccoli is 78 g) 
Proportion or multiple of standard portion 
(1 times photo 1 of broccoli) 

Household measures 
(H) 

Standard portion in grams 
(a glass of tea is 150 g) 

Proportion or multiple of standard portion 
(2 glasses of tea) 

Standard units (U) Standard portion in grams 
(a can of corn is 285 g) 

Proportion or multiple of standard portion 
(1/2 a can of corn) 

Standard portion (S) Standard portion in grams 
(onion along with fries 
weighs 10 g) 

1 

Gram/volume (G) 1 Amount in grams 
(75 g of potato salad) 

Unknown (?) 1 Amount in grams 
(Salad dressing weighs 15 grams) 

Table 3: Overview of EPIC-SOFT quantification methods, with examples in brackets 

 
Three methods (P, H and U) use both unitweights and amounts, one method (S) uses only unitweights, 
and two methods (G and ?) use only amounts. The difference between unitweight and amount is as 
follows: unitweights (in grams) are unique for a specific “food item – quantification method”-
combination, but the same for all individuals in the survey, whereas amounts are potentially different 
for each food item on each eating occasion for each day of an individual. Amounts are in grams 
(methods G and ?) or in number of units (methods P, H, and U).  
Consider a sample of i = 1,…, N individuals for whom dietary intake was measured using 24-hour 
recalls on Nday days (j = 1…Nday). Each unique food item that was reported was coded and 
classified into a food group (e.g., vegetables). The food group of interest consists of k foods (k = 
1…Nfood). For reasons of clarity, conversion factors that were used (e.g, conversion from raw to 
cooked) have not been included in the equations below and no uncertainty is attributed to them. To 
estimate the usual intake distribution of a food group we first calculate Qij, which is defined as the 
quantity (in grams) of a specific food group that was consumed by individual i on day j. Without 
uncertainty information, these quantities are obtained by summing over all eating occasions m (m = 
1…Noccij) of individual i on day j and over all foods k (k = 1...Nfood) belonging to the food group: 
 

        (1) ∑ ∑
= =

=
Nfood
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m
ijkmij

ij
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where Qijkm is the quantity in grams of food k consumed on eating occasion m for individual i on day j. 
For foods which are consumed as single foods, Qijkm is an amount a (methods G and ?), a unitweight 
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uw (method S), or is calculated by the multiplication of an amount a and a unitweight uw (methods P, 
H and U): 
 
    .      (2) kijkmijkm uwaQ =
 
For foods which are ingredients in mixed dishes, Qijkm is calculated as the sum over all relevant mixed 
dishes d (d = 1,...,Nmixd) of the multiplication of the quantity of the mixed dish (Qd) and the 
proportion of food k to the mixed dish (Fdk): 
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where aijdm is the amount of the mixed dish and uwd is the unit weight of the mixed dish.  
Both a and uw are specified for EPIC-SOFT quantification methods P, H, and U, for methods G and ? 
only a is specified and uw = 1, and for method S uw is specified and a = 1. 
When interested in the usual intake of nutrients the procedure is basically the same, but now a food 
group consists of all Nfood foods containing the nutrient of interest. The intake of a specific nutrient 
for individual i on day j (Iij) is then calculated by 

∑ ∑
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Nfood
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k
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ij
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,      (4) 

 
where Ck is the quantity of that nutrient (gram per gram) in food k. 

12.2 Uncertainty analysis 
For an uncertainty analysis of the usual intake assessment of foods and nutrients we modelled three 
sources of uncertainty:  

1. sampling uncertainty of the set of individuals interviewed on their consumption, 
2. uncertainty in uw (for EPIC-SOFT quantification methods P, H, U and S) 
3. uncertainty in a (for EPIC-SOFT quantification methods G, P, H, U and ?).  

In this description of the uncertainty analysis, we focus on the last two uncertainties, both related to 
the consumed portions. The sampling uncertainty is addressed by bootstrapping the set of individuals. 
Both amounts and unit weights are subject to uncertainty. This uncertainty is modelled by lognormal 
distributions where the mean (m) is the nominal value (i.e. the value used in an analysis without 
uncertainty), and where a coefficient of variation (cv) is specified to describe the amount of 
uncertainty. In practice a lognormal distribution with mean 1 may be used to generate an uncertainty 
factor that is multiplied with the nominal value. On a logarithmic scale the lognormal distribution 
becomes a normal distribution, characterized by two values, usually the mean μ and the standard 
deviation σ. The lognormal distribution can be characterized by specifying μ and σ of the 
corresponding normal distribution, or, more conveniently, by values on the natural scale (back-
transformed). If the natural logarithm (ln) is used then common parameters are m = exp(μ +½ σ 2) and 
the coefficient of variation cv = 100√(exp(σ 2)-1) (expressed as a percentage).  
To assess the uncertainty, values for a and uw are sampled from the uncertainty distributions (Figure 
5) and the usual intake distribution is estimated. 
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Figure 5: Flow chart indicating the procedure to quantify the uncertainty due to portion size 
estimation when conducting 24-hour recall with EPIC-SOFT as well as sampling uncertainty 

 
This process is repeated in 500 iterations to obtain uncertainty distributions of selected intake 
percentiles. For uw in each iteration one single value for each relevant combination of food and unit is 
drawn from an uncertainty distribution with cvuw. For a, values are drawn from an uncertainty 
distribution with cva. Here, in each iteration for each food as many values are sampled as there are 
simulated individuals in the consumption dataset. This is based on the idea that between-individual 
differences in estimating an amount of a food are far more important than the within-individual 
variation (across different eating occasions of the same individual). So we ignore the latter variation 
in estimation quality. To illustrate the difference in the treatment of uw and a, an example is provided 
in Table 4 on the consumption of tomatoes of three individuals on two days. In this example 
individual 1 consumes 1 tomato on day 1, and first 1 and then 2 tomatoes on day 2, etc (see rows 
labelled ‘no uncertainty (nominal)’). In the uncertainty analysis these nominal values (rows labelled ‘ 
no uncertainty (nominal)’) are modified by factors from a lognormal distribution with mean value 1 
(in iterations of the uncertainty analysis, here two iterations are shown labelled ‘iteration 1’ and 
‘iteration 2’). In each iteration there is only one uncertainty value for uw, but three for a (one for each 
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individual). This example is simplified by not resampling the set of individuals; in reality a fresh 
bootstrap sample from the set of individuals is used in each iteration, and individuals selected more 
than once receive independent draws for the uncertainty factor for amount. 
 

day (j) 
1 2 

 

individual 
(i) 

eating 
occasion (m) 

unit weight 
(uw) 

amount (a) 
 

unit weight 
(uw) 

amount (a) 

1 1 70 1  70 1 
 2 - -  70 2 
2 1 - -  70 1.5 
3 1 70 1  - - 
 2 70 1  - - 

no 
uncertainty 
(nominal) 

 3 70 0.5  - - 
1 1 70 x 0.98 1 x 1.12  70 x 0.98 1 x 1.12 
 2 - -  70 x 0.98 2 x 1.12 
2 1 - -  70 x 0.98 1.5 x 1.10 
3 1 70 x 0.98 1 x 0.93  - - 
 2 70 x 0.98 1 x 0.93  - - 

iteration 1 

 3 70 x 0.98 0.5 x 0.93  - - 
1 1 70 x 1.07 1 x 0.88  70 x 1.07 1 x 0.88 
 2 - -  70 x 1.07 2 x 0.88 
2 1 - -  70 x 1.07 1.5 x 1.01 
3 1 70 x 1.07 1 x 1.14   - 
 2 70 x 1.07 1 x 1.14   - 

iteration 2 

 3 70 x 1.07 0.5 x 1.14   - 

Table 4:Example of simulations in an uncertainty of consumption portions 

12.3 Specification of portion size uncertainties 
For quantification methods P, H and U the uncertainty in uw as well as the uncertainty in a needs to 
be specified, for quantification methods G and ? the uncertainty in a needs to be specified, and for 
method S the uncertainty in uw needs to be specified (Table 3). The uncertainty cv specifications were 
obtained using limited expert opinion to provide estimated upper values for a and uw, and equating 
these to the p97.5 of the (log)normal uncertainty distribution (the best estimates are interpreted as the 
mean m).  
The uncertainty cv for a was based as much as possible on information from studies, reports, 
publications. The uncertainty cv of uw was obtained as follows: 
1. Photos were considered an ordered series, where the lognormal cv was derived from the 

assumption that the p97.5 of the lognormal uncertainty distribution is equal to the nominal uw 
value of the next photo in the series. For the last photo, the uw of the previous picture was set as 
the p2.5 of the lognormal uncertainty distribution; 

2. The cv for household measures were generalized from cvs taken from a report of Hulshof et al. on 
vegetables; 

3. The cv for standard units and standard portions were assigned by placing the item into one of four 
categories, namely: a) ordered series: the same method as for photos was used, b) small 
uncertainty: the p97.5 of the lognormal uncertainty distribution was set to xsmall times the nominal 
value; items that were pre-packed and reported as whole products were placed in this category, c) 
medium uncertainty: the p97.5 of the lognormal uncertainty distribution was set to xmedium times 
the nominal value; items reported as whole products were in this category, d) large uncertainty: 
the p97.5 of the lognormal uncertainty distribution was set to xlarge the nominal value; items that 
were part of a product or man-made were placed in this category. 
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13  Simulated intake data 
Contribution by Paul Goedhart 

14  About MCRA 
MCRA is a result of an ongoing co-operation between RIKILT and Biometris since 1998. RIKILT co-
ordinates the Dutch KAP programme (Quality of Agricultural Products) where results of monitoring 
programs for chemical substances in food are gathered in a national database. RIKILT also has a 
recipe database to link food codes from the Dutch food consumption table to primary agricultural 
products. Biometris contributes statistical models and programs for quantitative risk analysis. 
Since 2005, the program is extended in collaboration with RIVM to include models similar to those 
available in the STEM (Statistical Exposure Modeling) software. Since 2010, RIVM has incorporated 
RIKILT activities in the field of risk assessment of …..?? 
 
The current release of MCRA is written in Microsoft Visual C# .NET 2008. MCRA is internet-based 
and can be used by registered users at http://mcra.rivm.nl. It consists of a basic program to do the 
computations and of additional database selection possibilities implemented in ASP.NET. A R-
(D)COM interface is used to connect the application with R, which is running in the background for 
statistical analyses and graphics (http://cran.r-project.org). 
 
An earlier version of the MCRA program, as well as an implementation of the Monte Carlo method in 
@Risk (1996), have been described in van der Voet et al. (1999), further elaboration was given in de 
Boer & van der Voet (2000, 2001, 2006), de Boer et al. (2009) and van der Voet et al. (2001).  
 
This manual covers the current release 7.0 (release 7 version 0) and all future updates starting with the 
same release number. Major updates of the program, encompassing new or improved facilities will be 
released with an increased release number and a new manual. 
 
Find more information about the current MCRA release in: 
MCRA 7 Reference Manual 
MCRA 7 Overview 
MCRA 7 Data Formats 
MCRA 7 Examples 
MCRA 7 On Line Help 
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